▎ 摘 要
In ZnO quantum dot/graphene heterojunction photo detectors, fabricated by printing quantum dots (QDs) directly on the graphene field-effect transistor (GFET) channel, the combination of the strong quantum confinement in ZnO QDs and the high charge mobility in graphene allows extraordinary quantum efficiency (or photoconductive gain) in visible-blind ultraviolet (UV) detection. Key to the high performance is a dean van der Waals interface to facilitate an efficient charge transfer from ZnO QDs to graphene upon UV illumination. Here, we report a robust ZnO QD surface activation process and demonstrate that a transition from zero to extraordinarily high photoresponsivity of 9.9 X 10(8) A/W and a photoconductive gain of 3.6 X 10(9) can be obtained in ZnO QDs/GFET heterojunction photodetectors, as the ZnO QDs surface is systematically engineered using this process. The high figure-of merit UV detectivity D* in exceeding 1 x 10(14) Jones represents more than 1 order of magnitude improvement over the best reported previously on ZnO nanostructure-based UV detectors. This result not only sheds light on the critical role of the van der Waals interface in affecting the optoelectronic process in ZnO QDs/GFET heterojunction photodetectors but also demonstrates the viability of printing quantum devices of high performance and low cost.