▎ 摘 要
In this work, different structures are designed based on graphene square-nanoring resonator (GSNR) and simulated by the three-dimensional finite-difference time-domain (3D-FDTD) method. Depending on the location and number of graphene nanoribbons (GNR), the proposed structures can be utilized as a band-pass filter, wavelength demultiplexer, or power splitter in the mid-infrared (MIR) wavelengths. The tunability of the suggested assemblies may be controlled simply by changing the dimensions and/or the chemical potential of the GSNRs. Benefiting from the nanoscale and ultra-compact GNRs, these structures can be proposed as basic blocks for optical computing and signal processing in the MIR wavelengths.