▎ 摘 要
Wide application leads to release of graphene oxide (GO) in aquatic environment, where it is subjected to photoaging and changes in physicochemical properties. As important component of natural organic matters, proteins may greatly affect the aggregation behaviors of photoaged GO. The effects of a typical model protein (bovine serum albumin, BSA) on the colloidal stability of photoaged GO were firstly investigated. Photoaging reduced the lateral size and oxygen-containing groups of GO, while the graphene domains and hydrophobicity increased as a function of irradiation time (0-24 h). Consequently, the photoaged GO became less stable than the pristine one in electrolyte solutions. Adsorption of BSA on the surface of the photoaged GO decreased as well, leading to thinner BSA coating on the photoaged GO. In the solutions with low concentrations of electrolytes, the aggregation rate constants (k) of all the photoaged GO firstly increased to the maximum agglomeration rate constants (k(fast), regime I), maintained at kfast (regime II) and then decreased to zero (regime III) as the BSA concentration increased. In both regime I and III, the photoaged GO were less stable at the same BSA concentrations, and the impacts of BSA on the colloidal stability of the photoaged GO were less than the pristine one, which was attributed to the weaker interactions between the photoaged GO and BSA. This study provided new insights into the colloidal stability and fate of GO nanomaterials, which are subjected to extensive light irradiation, in wastewater and protein-rich aquatic environment. (C) 2021 Elsevier Ltd. All rights reserved.