• 文献标题:   Highly Conductive and Transparent Large-Area Bilayer Graphene Realized by MoCl5 Intercalation
  • 文献类型:   Article
  • 作  者:   KINOSHITA H, JEON I, MARUYAMA M, KAWAHARA K, TERAO Y, DING D, MATSUMOTO R, MATSUO Y, OKADA S, AGO H
  • 作者关键词:   bilayer graphene, chemical vapor deposition, intercalation, photovoltaic cell, transparent electrode
  • 出版物名称:   ADVANCED MATERIALS
  • ISSN:   0935-9648 EI 1521-4095
  • 通讯作者地址:   Kyushu Univ
  • 被引频次:   7
  • DOI:   10.1002/adma.201702141
  • 出版年:   2017

▎ 摘  要

Bilayer graphene (BLG) comprises a 2D nanospace sandwiched by two parallel graphene sheets that can be used to intercalate molecules or ions for attaining novel functionalities. However, intercalation is mostly demonstrated with small, exfoliated graphene flakes. This study demonstrates intercalation of molybdenum chloride (MoCl5) into a large-area, uniform BLG sheet, which is grown by chemical vapor deposition (CVD). This study reveals that the degree of MoCl5 intercalation strongly depends on the stacking order of the graphene; twist-stacked graphene shows a much higher degree of intercalation than AB-stacked. Density functional theory calculations suggest that weak interlayer coupling in the twist-stacked graphene contributes to the effective intercalation. By selectively synthesizing twist-rich BLG films through control of the CVD conditions, low sheet resistance (83 Omega square(-1)) is realized after MoCl5 intercalation, while maintaining high optical transmittance (approximate to 95%). The low sheet resistance state is relatively stable in air for more than three months. Furthermore, the intercalated BLG film is applied to organic solar cells, realizing a high power conversion efficiency.