• 文献标题:   Hydrogen-Enhanced Catalytic Conversion of Amorphous Carbon to Graphene for Achieving Superlubricity
  • 文献类型:   Article, Early Access
  • 作  者:   LI RY, YANG X, MA M, ZHANG JY
  • 作者关键词:   amorphous carbon, hydrogen, cu nanoparticle, graphene, superlubricity
  • 出版物名称:   SMALL
  • ISSN:   1613-6810 EI 1613-6829
  • 通讯作者地址:  
  • 被引频次:   0
  • DOI:   10.1002/smll.202206580 EA JAN 2023
  • 出版年:   2023

▎ 摘  要

The solid-state conversion of amorphous carbon into graphene is extremely difficult, but it can be achieved in the friction experiments that induce macroscale superlubricity. However, the underlying conversion mechanisms remain elusive. Here, the friction experiments with Cu nanoparticles and (non-hydrogen (H) or H) a-C in vacuum, show the H-induced conversion of mechanical to chemical wear, resulting in the a-C's tribosoftening and nanofragmentating that produce hydrocarbon nanoclusters or molecules. It is such exactly hydrocarbon species that yield graphene at hydrogen-rich a-C friction interface, through reaction of them with Cu nanoparticles. In comparison, graphene isn't formed at Cu/non-H a-C friction interface. Atomistic simulations reveal the hydrogen-enhanced tribochemical decomposition of a-C and demonstrate the energetically favorable graphitization transformation of hydrocarbons on Cu substrates. The findings are of importance to achieve solid-state transformation between different carbon allotropes and provide a good strategy to synthesize other graphitic encapsulated catalysts with doped elements.