• 文献标题:   Ecofriendly high-performance ionic soft actuators based on graphene-mediated cellulose acetate
  • 文献类型:   Article
  • 作  者:   NAN M, WANG F, KIM S, LI H, JIN Z, BANG D, KIM CS, PARK JO, CHOI E
  • 作者关键词:   ecofriendly, actuator, cellulose acetate, graphene
  • 出版物名称:   SENSORS ACTUATORS BCHEMICAL
  • ISSN:  
  • 通讯作者地址:   Korea Inst Med Microrobot
  • 被引频次:   5
  • DOI:   10.1016/j.snb.2019.127127
  • 出版年:   2019

▎ 摘  要

Ionic-type artificial muscles with eco-friendly, biodegradable, and biocompatible functionalities have attracted attention for a wide range of potential applications in wearable electronics, soft haptic-feedback systems, and active biomedical devices. Here, we report on the development of an ecofriendly high-performance ionic soft actuator based on biofriendly cellulose acetate (CA), graphene nanopowders (GN), ionic liquid (IL) as a plasticizer, and biofriendly-flexible-nonmetallic conducting polymer poly(3,4-ethylene-dioxythiopene)-poly-styrenesulfonate (PEDOT: PSS) as an electrode, thereby realizing a novel ecofriendly CA-IL-GN actuator with a large bending mechanical deformation and a fast response time. The proposed CA-IL-GN (0.2 wt%) nano-composite membrane exhibited dramatic increments in specific capacitance (2.92 times) and Young's modulus (2.38 times), thus leading to a 2.9 times larger bending deformation and a 4.8 times faster response than those of pure CA-IL actuator. Therefore, the developed ecofriendly high-performance CA-IL-GN actuator can be considered to be a promising candidate for human-friendly electronics, including artificial muscles, flexible haptic devices, soft wearable devices, and bio-medical devices, due to its cost-effectiveness, large bending mechanical actuation, fast response, and bio-friendly functionalities.