• 文献标题:   Surface charge density governs the ionic current rectification direction in asymmetric graphene oxide channels
  • 文献类型:   Article
  • 作  者:   LI S, ZHANG XK, SU JY
  • 作者关键词:  
  • 出版物名称:   PHYSICAL CHEMISTRY CHEMICAL PHYSICS
  • ISSN:   1463-9076 EI 1463-9084
  • 通讯作者地址:  
  • 被引频次:   1
  • DOI:   10.1039/d2cp05137k EA FEB 2023
  • 出版年:   2023

▎ 摘  要

Charged asymmetric channels are extensively investigated for the design of artificial biological channels, ionic diodes, artificial separation films, etc. These applications are attributed to the unique ionic current rectification phenomenon, where the surface charge density of the channel has a deep influence. In this work, we use molecular dynamics simulations to study the rectification phenomenon in asymmetric graphene oxide channels. A fascinating finding is that the ionic current rectification direction reverses from the negative to positive electric field direction with an increase in surface charge density. Specifically, at low charge density, the ionic flux reaches greater values in the negative electric field due to the enrichment of cations and anions, which provides a sufficient electrostatic shielding effect inside the channel and increases the possibility of ion release by the residues. However, at high charge density, the extremely strong residue attraction induces a Coulomb blockade effect in the negative electric field, which seriously impedes the ion transport and eventually leads to a smaller ionic current. Consequently, this ionic current order transition ultimately results in the rectification reversion phenomenon, providing a new route for the design of some novel nanofluidic devices.