▎ 摘 要
In this study, we report the design and fabrication of a series of visible-light-responsive photocatalysts based on one-dimensional iron terephthalate (MIL-53(Fe)) microrods hybridized with graphene (GR) and experimentally demonstrate their remarkably improved visible-light-induced photocatalytic activity. During the solvothermal process, the reduction of graphene oxide (GO) is accompanied by the MIL-53(Fe) crystallization, which endows them with effective interfacial contact, thus facilitating the transfer of photogenerated charge to lower the recombination rate of excited carriers. The GR/MIL-53(Fe)-H2O2 systems exhibit significantly higher photocatalytic activity toward degrading Rhodamine B (RhB) than that of bare MIL-53(Fe)-H2O2 under visible light irradiation. The introduced H2O2 induces photosynergistic generation of more amounts of hydroxyl radicals to contribute to the improved photocatalytic activity. This work could open a new way for the exploration and utilization of metalorganic framework (MOF)-based crystalline materials for light harvesting.