▎ 摘 要
Three-dimensional thermally conductive graphene aerogels have become more and more significant in practical thermal management applications. However, the interface between the graphene aerogel and the polymer has a strong interface thermal resistance, and the compatibility between the interfaces is also poor. In this study, a simple and versatile method for grafting graphene aerogels with titanate coupling agents on the surface was developed so that the modified graphene aerogels exhibit excellent thermal conductivity and mechanical properties and reduce the interface thermal resistance and increase the interface compatibility between graphene aerogels and epoxy resin. A high thermal conductivity of 2.53 W m(-1) K-1 was obtained under a low graphene load of 2.5 wt%, corresponding to a thermal conductivity enhancement of approximately 1388% compared with pure epoxy resin. It provides a facile new idea for the preparation of high-quality three-dimensional graphene epoxy composites.