• 文献标题:   Time-intended effect on electrochemical performance of hydrothermally reduced graphene oxide nanosheets: Design and study of solid-state symmetric supercapacitor
  • 文献类型:   Article
  • 作  者:   KADAM SL, MANE SM, INGOLE RS, DHASADE SS, SHIN JC, KULKARNI SB
  • 作者关键词:  
  • 出版物名称:   JOURNAL OF MATERIALS SCIENCEMATERIALS IN ELECTRONICS
  • ISSN:   0957-4522 EI 1573-482X
  • 通讯作者地址:  
  • 被引频次:   0
  • DOI:   10.1007/s10854-021-06042-x EA MAY 2021
  • 出版年:   2021

▎ 摘  要

Self-organized porous sheet-like assemblies have attracted extensive attention for the development of flexible high-performance electrodes. This work demonstrates the facile synthesis and effects of reduction time on the electrochemical performance of porous sheet-like assemblies of reduced graphene oxide (rGO) on carbon cloth. An rGO porous assembly with a reduction time of 4 h exhibited a superior specific capacitance of 456 F/g at a scan rate of 5 mV/s and 223 F/g at a current density of 1 mA/cm(2), with similar to 93.9% initial capacity retention over 2000 cycles. A solid-state symmetric supercapacitor device constructed of a rGO4//rGO4 porous assembly achieved a specific capacitance of 45.86 F/g at a scan rate of 5 mV/s and yielded an energy density of 1.27 Wh/kg and specific power of 833.3 W/kg in a PVA-H2SO4 gel polymer electrolyte. Furthermore, the flexible solid-state symmetric device provides outstanding cyclic stability with a 95.3% retention of its initial capacity over 2000 cycles. Thus, electrodes constructed of rGO porous sheets show great potential for flexible and transparent solid-state symmetric energy storage devices.