▎ 摘 要
Epitaxial graphene on SiC that provideswafer-scale and high-quality graphene sheets on an insulating substrate is a promising material to realize graphene-based nanodevices. The presence of the insulating substrate changes the physical properties of free-standing graphene through the interfacial phonon, e.g., limiting the mobility. Despite such known impacts on the material properties, a complete and microscopic picture is missing. Here, we report on atomically resolved inelastic electron tunneling spectroscopy (IETS) with a scanning tunneling microscope for epitaxial graphene grown on 4H-SiC(0001). Our data reveal a strong spatial dependence in the IETS spectrum, which cannot be explained by intrinsic graphene properties. We show that this variation in the IETS spectrum originates from a localized low-energy vibration of the interfacial Si atom with a dangling bond via ab initio electronic and phononic state calculations. This insight may help advancing graphene device performance through interfacial control.