▎ 摘 要
Bromate (BrO3-) is a carcinogenic and genotoxic contaminant commonly generated during ozonation of bromide-containing water. In this work, the reductive removal of BrO3- in a continuous three-dimensional electrochemical reactor with palladium-reduced graphene oxide modified carbon paper (Pd-rGO/C) cathode and Pd-rGO modified granular activated carbon (Pd-rGO/GAC) particles was investigated. The results indicated that the rGO sheets significantly promoted the electrochemical reduction of BrO3-. With the enhanced electron transfer by rGO sheets, the electroreduction of H2O to atomic H* oh the polarized Pd particles could be significantly accelerated, leading to a faster reaction rate of BrO3- with atomic H*. The synergistic effect of the Pd-rGO/C cathode and Pd-rGO/GAC particles were also exhibited. The atomic Ha involved in various electroreduction processes was detected by electron spin resonance spectroscopy and its role for BrO3- reduction was determined. The performance of the reactor was evaluated in terms of the removal of BrO3- and the yield of Br- as a function of the GO concentration, Pd loading amount, current density, hydraulic residence time (HRT), and initial BrO3- concentration. Under the current density of 0.9 mA/cm(2), BrO3- with the initial concentration of 20 mu g/L was reduced to be less than 6.6 mu g/L at the HRT of 20 min. The BrO3- reduction was inhibited in the presence of dissolved organic matter. Although the precipitates generated from Ca2+ and Mg2+ in the tap water would cover the Pd catalysts, a long-lasting electrocatalytic activity could be maintained for the 30 d treatment. SEM and XPS analysis demonstrated that the precipitates were predominantly deposited onto the Pd-rGO/C cathode rather than the Pd-rGO/GAC particles. (c) 2015 Elsevier Ltd. All rights reserved.