▎ 摘 要
Series of graphene molecules with varied emission colors have been prepared by oxidative cyclo-dehydrogenation using anhydrous ferric chloride (FeCl3) as the catalyst under mild conditions. By controlling the oxidation time in the initial step only, molecules with different fluorescence colors are conveniently obtained. New colors can be recorded evidently because of the stepwise and controllable process, which highly related to the conjugation length. Blue emissive starting compounds in the solid state can be transformed into orange upon brief oxidation, whereas green emissive oligomers are varied to red with an emission wavelength redshift about 123 nm. Cyclic voltammetry measurements performed can give the corresponding data, which verify the results drawn from the UV and PL spectroscope. The gradual change of conjugation length with tunable emission is confirmed in the MALDI-TOF study as well. Further characterizations indicate that the graphene molecules possess satisfactory optical properties, which are highly emissive both in solution and in the solid state because of the alkyl group. In addition, the good thermal stability and the self-assembly of graphene molecules suggest that they are promising candidates for high-tech applications. Furthermore, the fabricated field-effect transistors possess the nice performance, whose mobilities are about 0.57 cm(2) V-1 s(-1) with an on off ratio of 1 x 10(4) and 0.81 cm(2) s(-1) with an on-off ratio of 1 x 10(3), respectively.