• 文献标题:   Reinforcing Mechanisms of Graphene and Nano-TiC in Al2O3-Based Ceramic-Tool Materials
  • 文献类型:   Article
  • 作  者:   SUN ZF, ZHAO J, WANG XC, CUI EZ, YU H
  • 作者关键词:   graphene, nanotic, ceramic, microstructure, mechanical propertie, reinforcing mechanism
  • 出版物名称:   NANOMATERIALS
  • ISSN:  
  • 通讯作者地址:   Shandong Univ
  • 被引频次:   1
  • DOI:   10.3390/nano10091815
  • 出版年:   2020

▎ 摘  要

Graphene and nano-TiC, which have good reinforcing effects on Al2O3-based ceramic-tool materials, are generally used as additive phases for ceramics. In this study, nine kinds of samples were sintered, to investigate the effects of graphene and nano-TiC on the reinforcing mechanisms of Al2O3-based ceramics. The experimental results indicated that adding 0.5 vol% graphene and 10 vol% nano-TiC can obtain the optimum flexural strength, fracture toughness, and Vickers hardness, which were 705 +/- 44 MPa, 7.4 +/- 0.4 MPa m(1/2), and 20.5 +/- 0.8 GPa, respectively. Furthermore, the reinforcing mechanisms of crack bridging, pull-out of graphene, and pull-out of nano-TiC are identified, which are contributed to improving the mechanical properties of ceramics. Meanwhile, other reinforcing mechanisms induced by graphene (graphene break, crack guiding, and 3D propagation) and nano-TiC (crack branching, crack deflection, and peeling) are discussed. These reinforcing mechanisms are coupled together, while decoupling is hard to work out. Thus, further quantitative studies of reinforcing effects of graphene and nano-TiC on Al2O3-based ceramic-tool materials are necessary to be carried out.