• 文献标题:   Enhanced photocatalytic H-2-production activity of graphene-modified titania nanosheets
  • 文献类型:   Article
  • 作  者:   XIANG QJ, YU JG, JARONIEC M
  • 作者关键词:  
  • 出版物名称:   NANOSCALE
  • ISSN:   2040-3364
  • 通讯作者地址:   Wuhan Univ Technol
  • 被引频次:   555
  • DOI:   10.1039/c1nr10610d
  • 出版年:   2011

▎ 摘  要

Graphene-modified TiO2 nanosheets with exposed (001) facets (graphene/TiO2) were prepared by microwave-hydrothermal treatment of graphene oxide (GO) and hydrothermally synthesized TiO2 nanosheets with exposed (001) facets in an ethanol-water solvent. These nanocomposite samples showed high photocatalytic H-2-production activity in aqueous solutions containing methanol, as sacrificial reagent, even without Pt co-catalyst. The optimal graphene content was found to be similar to 1.0 wt %, giving a H-2- production rate of 736 mu mol h(-1) g(-1) with a quantum efficiency (QE) of 3.1%, which exceeded the rate observed on pure TiO2 nanosheets by more than 41 times. This high photocatalytic H-2-production activity is due to the deposition of TiO2 nanosheets on graphene sheets, which act as an electron acceptor to efficiently separate the photogenerated charge carriers. The observed enhancement in the photocatalytic activity is due to the lower absolute potential of graphene/graphene(-) (-0.08 V vs. SHE, pH 0) in comparison to the conduction band (-0.24 V) of anatase TiO2, meanwhile the aforementioned absolute value is higher than the reduction potential of H+ (0 V), which favors the electron transfer from the conduction band (CB) of TiO2 to graphene sheets and the reduction of H+, thus enhancing photocatalytic H-2- production activity. The proposed mechanism for the observed photocatalytic performance of TiO2 nanosheets, modified with a small amount of graphene, was further confirmed by photoluminescence spectroscopy and transient photocurrent response. This work not only shows a possibility for the utilization of low cost graphene sheets as a substitute for noble metals (such as Pt) in the photocatalytic H-2-production but also for the first time shows a significant enhancement in the H-2-production activity by using metal-free carbon material as an effective co-catalyst.