• 文献标题:   Optical Phonons in Twisted Bilayer Graphene with Gate-Induced Asymmetric Doping
  • 文献类型:   Article
  • 作  者:   CHUNG TF, HE R, WU TL, CHEN YP
  • 作者关键词:   twisted bilayer graphene, gating, raman, interlayer screening
  • 出版物名称:   NANO LETTERS
  • ISSN:   1530-6984 EI 1530-6992
  • 通讯作者地址:   Purdue Univ
  • 被引频次:   12
  • DOI:   10.1021/nl504318a
  • 出版年:   2015

▎ 摘  要

Twisted bilayer graphene (tBLG) devices with ion gel gate dielectrics are studied using Raman spectroscopy in the twist angle regime where a resonantly enhanced G band can be observed. We observe prominent splitting and intensity quenching on the G Raman band when the carrier density is tuned away from charge neutrality. This G peak splitting is attributed to asymmetric charge doping in the two graphene layers, which reveals individual phonon self-energy renormalization of the two weakly coupled layers of graphene. We estimate the effective interlayer capacitance at low doping density of tBLG using an interlayer screening model. The anomalous intensity quenching of both G peaks is ascribed to the suppression of resonant interband transitions between the two saddle points (van Hove singularities) that are displaced in the momentum space by gate-tuning. In addition, we observe a softening (hardening) of the R Raman band, a superlattice-induced phonon mode in tBLG, in electron (hole) doping. Our results demonstrate that gate modulation can be used to control the optoelectronic and vibrational properties in tBLG devices.