▎ 摘 要
Excessive Cd2+ poses adverse influences on ecosystem and human beings, but its precise detection via a facile and environment-friendly method with resistance to interference is still a challenge. Here, a turn-on ratiometric fluorescent nanoprobe for Cd2+ detection is established using yellow-emission AgInZnS quantum dots (AIZS QDs) and blue-emission nitrogen-doped graphene quantum dots (NGQDs), which serve as a recognition unit and internal reference signal, respectively. Cd2+ could enhance the fluorescence of AIZS QDs due to the passivation of surface defects, while it has no significant effect on that of NGQDs. This nanoprobe has a large detection range from 0.5 to 100 mu M and a limit of detection low to 28.6 nM. It shows strong anti-interference ability for Cd2+ even in lake water samples with recovery from 98 to 101% and low relative standard deviation of 1.01%, indicating its excellent effectuation to real-application world. [GRAPHICS]