▎ 摘 要
Study of electronic properties of graphene on an anisotropic crystal substrate including boron nitride (BN) has raised significant interest recently due to the application of graphene based vertical hetero-devices. We have performed scanning tunneling microscopy (STM) and scanning tunneling spectroscopy studies of single-layer graphene on hexagonal BN (h-BN) substrates with an applied perpendicular magnetic field at low temperature. Different periodic moire superlattices can be resolved with STM, and their quantized Landau levels in high magnetic field are investigated. The renormalized Fermi velocities of massless Dirac fermions in graphene are revealed to show dependent on the moire superlattice. Density functional theory calculation verifies that the interlayer interaction between graphene and h-BN is stronger with smaller twisting angle between lattices of graphene and h-BN, thus, leading to a reduction in the velocity of charge carriers. Our results should provide valuable insight of electronic properties and device performance of graphene on crystal substrates. (C) 2013 AIP Publishing LLC.