▎ 摘 要
We apply the recently developed partition-free time-dependent Landauer-Buttiker (TD-LB) formalism to the study of periodically driven transport in graphene nanoribbons (GNRs). When an ac driving is applied, this formalism can be used to prove generic conditions for the existence of a nonzero dc component of the net current (pump current) through the molecular device. Time-reversal symmetry breaking in the driving field is investigated and found to be insufficient for a nonzero pump current. We then derive explicit formulas for the current response to a particular biharmonic bias. We calculate the pump current through different GNR configurations and find that the sign and existence of a nonzero pump current can be tuned by simple alterations to the static parameters of the TD bias. Furthermore, we investigate transient currents in different GNR configurations. We find a selection rule of even and odd harmonic response signals depending on a broken dynamical inversion symmetry in the bias.