• 文献标题:   Low-Temperature Solution-Based Phosphorization Reaction Route to Sn4P3/Reduced Graphene Oxide Nanohybrids as Anodes for Sodium Ion Batteries
  • 文献类型:   Article
  • 作  者:   LI Q, LI ZQ, ZHANG ZW, LI CX, MA JY, WANG CX, GE XL, DONG SH, YIN LW
  • 作者关键词:  
  • 出版物名称:   ADVANCED ENERGY MATERIALS
  • ISSN:   1614-6832 EI 1614-6840
  • 通讯作者地址:   Shandong Univ
  • 被引频次:   10
  • DOI:   10.1002/aenm.201600376
  • 出版年:   2016

▎ 摘  要

Different from previously reported mechanical alloying route to synthesize SnxP3, novel Sn4P3/reduced graphene oxide (RGO) hybrids are synthesized for the first time through an in situ low-temperature solution-based phosphorization reaction route from Sn/RGO. Sn4P3 nanoparticles combining with advantages of high conductivity of Sn and high capacity of P are homogenously loaded on the RGO nanosheets, interconnecting to form 3D mesoporous architecture nanostructures. The Sn4P3/RGO hybrid architecture materials exhibit significantly improved electrochemical performance of high reversible capacity, high-rate capability, and excellent cycling performance as sodium ion batteries (SIBs) anode materials, showing an excellent reversible capacity of 656 mA h g(-1) at a current density of 100 mA g(-1) over 100 cycles, demonstrating a greatly enhanced rate capability of a reversible capacity of 391 mA h g(-1) even at a high current density of 2.0 A g(-1). Moreover, Sn4P3/RGO SIBs anodes exhibit a superior long cycling life, delivering a high capacity of 362 mA h g(-1) after 1500 cycles at a high current density of 1.0 A g(-1). The outstanding cycling performance and rate capability of these porous hierarchical Sn4P3/RGO hybrid anodes can be attributed to the advantage of porous structure, and the synergistic effect between Sn4P3 nanoparticles and RGO nanosheets.