• 文献标题:   Theory of Liquid Film Growth and Wetting Instabilities on Graphene
  • 文献类型:   Article
  • 作  者:   SENGUPTA S, NICHOLS NS, DEL MAESTRO A, KOTOV VN
  • 作者关键词:  
  • 出版物名称:   PHYSICAL REVIEW LETTERS
  • ISSN:   0031-9007 EI 1079-7114
  • 通讯作者地址:   Univ Vermont
  • 被引频次:   1
  • DOI:   10.1103/PhysRevLett.120.236802
  • 出版年:   2018

▎ 摘  要

We investigate wetting phenomena near graphene within the Dzyaloshinskii-Lifshitz-Pitaevskii theory for light gases of hydrogen, helium, and nitrogen in three different geometries where graphene is either affixed to an insulating substrate, submerged or suspended. We find that the presence of graphene has a significant effect in all configurations. When placed on a substrate, the polarizability of graphene can increase the strength of the total van der Waals force by a factor of 2 near the surface, enhancing the propensity towards wetting. In a suspended geometry unique to two-dimensional materials, where graphene is able to wet on only one side, liquid film growth becomes arrested at a critical thickness, which may trigger surface instabilities and pattern formation analogous to spinodal dewetting. The existence of a mesoscopic critical film with a tunable thickness provides a platform for the study of a continuous wetting transition, as well as the engineering of custom liquid coatings. These phenomena are robust to some mechanical deformations and are also universally present in doped graphene and other two-dimensional materials, such as monolayer dichalcogenides.