▎ 摘 要
Recent advances in on-body wearable medical apparatus and implantable devices drive the development of light-weight and bendable electrochemical sensors, which require the design of high-performance flexible electrode system. In this work, we reported a new type of freestanding and flexible electrode based on graphene paper (GP) supported 3D monolithic nanoporous gold (NPG) scaffold (NPG/GP), which was further modified by a layer of highly dense, well dispersed and ultrafine binary PtCo alloy nanoparticles via a facile and effective ultrasonic electrodeposition method. Our results demonstrated that benefited from the synergistic effect of the electrocatalytically active PtCo alloy nanoparticles, the large-active-area and highly conductive 3D NPG scaffold, and the mechanically strong and stable GP electrode substrate, the resultant PtCo alloy nanoparticles modified NPG/GP (PtCo/NPG/GP) exhibited high mechanical strength and good electrochemical sensing performances toward nonenzymatic detection of glucose, including a wide linear range from 35 mu M- to 30 mM, a low detection limit of 5 mu M (S/N = 3) and a high sensitivity of 7.84 mu A cm(-2) mM(-1) as well as good selectivity, long-term stability and reproducibility. The practical application of the proposed PtCo/NPG/GP has also been demonstrated in in vitro detection of blood glucose in real clinic samples. (C) 2016 Elsevier B.V. All rights reserved.