▎ 摘 要
This study was targeted towards the synthesis and characterization of new chitosan-gelatin biocomposite films reinforced with graphene oxide and crosslinked with genipin. The composites' mode of structuration was characterized by Fourier Transform Infrared spectroscopy and X-ray diffraction, while morphology and topography were investigated by scanning electron microscopy, nano-computer tomography and profilometry. Eventually, thermal stability was evaluated through thermogravimetrical analysis, mechanical properties assessment was carried out to detect potential improvements as a result of graphene oxide (GO) addition and in vitro enzyme degradation was performed to discern the most promising formulations for the maturation of the study towards in vivo assays. In accordance with similar works, results indicated the possibility of using GO as an agent for adjusting films' roughness, chemical stability and polymer structuration. The enzymatic stability of chitosan-gelatin (CHT-GEL) films was also improved by genipin (GEN) crosslinking and GO supplementation, with the best results being obtained for CHT-GEL-GEN and CHT-GEL-GEN-GO3 (crosslinked formulation with 3 wt.% GO). Yet, contrary to previous reports, no great enhancement of CHT-GEN-GEL-GO thermal performances was obtained by the incorporation of GO.