▎ 摘 要
Graphene-based membranes demonstrating ultrafast water transport, precise molecular sieving of gas and solvated molecules shows great promise as novel separation platforms; however, scale-up of these membranes to large-areas remains an unresolved problem. Here we demonstrate that the discotic nematic phase of graphene oxide (GO) can be shear aligned to form highly ordered, continuous, thin films of multi-layered GO on a support membrane by an industrially adaptable method to produce large-area membranes (13 X 14 cm(2)) in <5 s. Pressure driven transport data demonstrate high retention (490%) for charged and uncharged organic probe molecules with a hydrated radius above 5 A as well as modest (30-40%) retention of monovalent and divalent salts. The highly ordered graphene sheets in the plane of the membrane make organized channels and enhance the permeability (71 +/- 5lm(-2) hr(-1) bar(-1) for 150 +/- 15 nm thick membranes).