• 文献标题:   PEG400-assisted synthesis of oxygen-incorporated MoS2 ultrathin nanosheets supported on reduced graphene oxide for sodium ion batteries
  • 文献类型:   Article
  • 作  者:   CHEN W, WU WW, PAN ZY, WU XH, ZHANG HX
  • 作者关键词:   sodium ion batterie, mos2/rgo, oxygen incorporation, hydrothermal synthesi, electrochemical performance, structural analysi
  • 出版物名称:   JOURNAL OF ALLOYS COMPOUNDS
  • ISSN:   0925-8388 EI 1873-4669
  • 通讯作者地址:   Guangxi Univ
  • 被引频次:   2
  • DOI:   10.1016/j.jallcom.2018.05.301
  • 出版年:   2018

▎ 摘  要

Oxygen-incorporated MoS2 (OI-MoS2) ultrathin nanosheets have been successfully fabricated using a PEG400-assisted one-pot hydrothermal method. The role of polyethylene-glycol 400 (PEG400) in promoting the formation of long-range ordered single-phase OI-MoS2 has not been investigated previously. In our study, we demonstrate that polyethylene-glycol 400 (PEG400) can act as a surfactant to reduce nanosheet aggregation. Furthermore, it can function as a structural modifier to regulate the degree of sulfidation and stabilize the oxygen-incorporated structure with larger interlayer spacing and higher intrinsic electronic conductivity for facilitating sodiation/de-sodiation reactions. A very low content of reduced graphene oxide (rGO) is enough to provide a highway for electron transport between adjacent OI-MoS2 layers, and prevent OI-MoS2 layers from stacking in the [002] direction. Enhanced electro-chemical performance is observed in the OI-MoS2/L-rGO nanosheets with carbonate-based electrolyte, delivering a discharge capacity of 462 mAh g(-1) during the 2nd cycle with 89.1% capacity retention after 50 cycles. (C) 2018 Elsevier B.V. All rights reserved.