▎ 摘 要
Nano-sized Ag2CO3 and reduced graphene oxide (RGO) composites were fabricated by a facile chemical precipitation approach in N, N-dimethylformamide (DMF) solvent. The as-prepared Ag2CO3/RGO nanocomposites were characterized by X-ray diffraction (XRD), Raman spectroscopy, X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM), transmission electron microscopy (TEM), and ultraviolet-visible (UV-vis) diffuse reflectance spectroscopy (DRS). The photocatalytic activity of the samples was evaluated by photocatalytic degradation of methyl orange (MO) under visible light irradiation. The results showed that the nano-sized Ag2CO3 particles are deposited on the surfaces of RGO. The Ag2CO3/RGO nanocomposites exhibited much higher photocatalytic activity than the pure nano-sized Ag2CO3 due to the improved separation efficiency of photogenerated carriers, and Ag2CO3/2 wt% RGO displayed the highest photocatalytic degradation efficiency. Furthermore, the photocatalytic and structural stability of Ag2CO3 is greatly enhanced due to the good electron transfer of RGO.