• 文献标题:   Extractive-Catalytic Oxidative Desulfurization with Graphene Oxide-Based Heteropolyacid Catalysts: Investigation of Affective Parameters and Kinetic Modeling
  • 文献类型:   Article
  • 作  者:   DIZAJI AK, MORTAHEB HR, MOKHTARANI B
  • 作者关键词:   extractiveoxidative desulfurization, graphene oxide, heteropolyacids hpas, kinetic modeling, mass transfer
  • 出版物名称:   CATALYSIS LETTERS
  • ISSN:   1011-372X EI 1572-879X
  • 通讯作者地址:   Chem Chem Engn Res Ctr Iran
  • 被引频次:   7
  • DOI:   10.1007/s10562-018-2595-x
  • 出版年:   2019

▎ 摘  要

Different tungsten and molybdenum containing heteropolyacid (HPA) catalysts (H3PMo12O40:Mo-12,Mo- H3PMo8W4O40:Mo8W4, H3PMo6W6O40:Mo6W6, H3PW12O40:W-12) were immobilized on graphene oxide (GO) to obtain HPA-GO heterogeneous catalysts (Mo-12-GO, Mo8W4-GO, Mo6W6-GO, and W-12-GO). The synthesized catalysts were applied in removal of sulfur containing compounds [benzothiophene (BT), dibenzothiophene (DBT), and 4,6-dimethyldibenzothiophene (4,6-DMDBT)] with combined extraction-oxidation process using a batch reactor. The sulfur removal efficiency was gradually increased with increasing the ratio of molybdenum ions in the HPAs and complete sulfur removal efficiency for DBT was obtained for Mo-12-GO. The roles of affecting parameters such as extracting solvent, catalyst calcination, and feed concentration were also investigated. Among different extracting solvents including acetonitrile, DMF, NMP, methanol, water, and ethylene glycol, acetonitrile represented the best ECOD performance as the extracting solvent. The performance of non-calcined catalyst for sulfur removal was slightly better than that by the calcined one. It was also found that the high sulfur removal activity of the extractive-catalytic oxidative process (ECOD) was retained even at high feed concentration. The kinetic model was evaluated considering mass transfer coupled with chemical reaction, in which the catalytic oxidation reaction was recognized as the rate-controlling step. The kinetic parameters such as rate constants and apparent activation energy were determined. [GRAPHICS]