• 文献标题:   Programmable Extreme Pseudomagnetic Fields in Graphene by a Uniaxial Stretch
  • 文献类型:   Article
  • 作  者:   ZHU SZ, STROSCIO JA, LI T
  • 作者关键词:  
  • 出版物名称:   PHYSICAL REVIEW LETTERS
  • ISSN:   0031-9007 EI 1079-7114
  • 通讯作者地址:   Univ Maryland
  • 被引频次:   50
  • DOI:   10.1103/PhysRevLett.115.245501
  • 出版年:   2015

▎ 摘  要

Many of the properties of graphene are tied to its lattice structure, allowing for tuning of charge carrier dynamics through mechanical strain. The graphene electromechanical coupling yields very large pseudomagnetic fields for small strain fields, up to hundreds of Tesla, which offer new scientific opportunities unattainable with ordinary laboratory magnets. Significant challenges exist in investigation of pseudomagnetic fields, limited by the nonplanar graphene geometries in existing demonstrations and the lack of a viable approach to controlling the distribution and intensity of the pseudomagnetic field. Here we reveal a facile and effective mechanism to achieve programmable extreme pseudomagnetic fields with uniform distributions in a planar graphene sheet over a large area by a simple uniaxial stretch. We achieve this by patterning the planar graphene geometry and graphene-based heterostructures with a shape function to engineer a desired strain gradient. Our method is geometrical, opening up new fertile opportunities of strain engineering of electronic properties of 2D materials in general.