• 文献标题:   Electrochemically Desulfurized Molybdenum Disulfide (MoS2) and Reduced Graphene Oxide Aerogel Composites as Efficient Electrocatalysts for Hydrogen Evolution
  • 文献类型:   Article
  • 作  者:   GUPTA S, ROBINSON T, DIMAKIS N
  • 作者关键词:   graphene/mos2, electrochemical desulfurization, sulfur vacancy, tafel plot
  • 出版物名称:   JOURNAL OF NANOSCIENCE NANOTECHNOLOGY
  • ISSN:   1533-4880 EI 1533-4899
  • 通讯作者地址:   Western Kentucky Univ
  • 被引频次:   0
  • DOI:   10.1166/jnn.2020.18573
  • 出版年:   2020

▎ 摘  要

Recent developments in graphene related materials including molybdenum disulfide (MoS2) is gaining popularity as efficient and cost-effective nanoscale electrocatalyst essential for hydrogen production. These "clean" energy technologies require delicate control over geometric, morphological, chemical and electronic structure affecting physical and electrochemical catalytic properties. In this work, we prepared three-dimensional hierarchical mesoporous aerogels consisting of two-dimensional functionalized graphene and MoS2 nanosheets of varying ratio of components under hydrothermal-solvothermal conditions (P < 20 bar, T < 200 degrees C). We systematically characterized these hybrid aerogels in terms of surface morphology, microstructure, understand heterointer-faces interaction through electron microscopy, X-ray diffraction, optical absorption and emission and Raman spectroscopy, besides electrochemical properties prior to and post electrochemical desulfurization that induces finely controlled sulfur vacancies. They feature enhanced electrical conductivity by means of eliminating contact resistance and meso-/nanoporous structure facilitating faster ion diffusion (mass transport). We demonstrate that controlled defects density, edges plane sites (nanowalls), mesoscale porosity and topological interconnectedness (monolithic aerogel sheets) invoked can accelerate electrocatalytic hydrogen production. For instance, low over potential with Tafel slope similar to 77 mV.dec(-1) for 60 wt.% MoS2, highcurrent density, and good stability was achieved with desulfurization. These results are compared with continuous multilayer MoS2 films highlighting the multiple role of tunable structure and electronic properties. The adjacent S-vacancy defects induced increase in density of states, dissociation and confinement of water molecules at the pore edge and planar S-vacancy sites calculated using density functional theory helped in establishing improved heterogeneous electrocatalytic rate. This is supported with combined measurements of diffusion coefficient and heterogeneous electron transfer rate via surface-sensitive scanning electrochemical microscopy (SECM) technique.