▎ 摘 要
TiO2-reduced graphene oxide (RGO) composites are successfully synthesized via the microwave-assisted reduction of graphite oxide in a TiO2 suspension using a microwave synthesis system. Their morphology, structure and photocatalytic performance in the reduction of Cr(VI) are characterized by scanning electron microscopy, transmission electron microscopy, atomic force microscopy, X-ray diffraction spectroscopy and UV-vis absorption spectrophotometer. The results show that in the composite the RGO nanosheets are densely decorated by TiO2 nanoparticles, which displays a good combination between RGO and TiO2. TiO2-RGO composites exhibit enhanced photocatalytic performance for the reduction of Cr(VI) with a maximum removal rate of 91% under UV light irradiation as compared with pure TiO2 (83%) and commercial TiO2 P25 (70%) due to the increased light absorption intensity and range as well as the reduction of electron-hole pair recombination in TiO2 with the introduction of RGO.