▎ 摘 要
In this study, magnetic/graphene/chitosan nanocomposite (MGCH) is prepared through facile solvothermal process and employed as an adsorbent for the removal of 2-naphthol from aqueous solution. The physico-chemical characteristic results of FESEM, Raman, [FIR, XRD and VSM confirms that the MGCH nanocomposite is effectively prepared. The FESEM and LDS analysis reveals that the high density of spherical-like Fe3O4 nanoparticles and chitosan are successfully assembled on the surfaces of the graphene sheets. VSM result of MGCH composite exhibited higher saturation magnetization of 46.5 emu g(-1) and lower coercivity (H-c) of 50 O-e. This result discloses that MGCH possesses enough response required for the separation from aqueous solution. The batch mode adsorption studies demonstrates that MGCH based adsorbent showed almost 993% adsorption of 2-naphthol with a maximum adsorption capacity of 16949 mg g(-1) at pH 2. Moreover, the kinetic studies of the samples are performed by fitting adsorption models to ensure the nature of the adsorption system. This work proves that MGCH nanocomposite can be used as high-performance adsorbent for removing of phenolic pollutants from contaminated wastewater. (C) 2020 Elsevier B.V. All rights reserved.