• 文献标题:   Liquid Metal: An Innovative Solution to Uniform Graphene Films
  • 文献类型:   Article
  • 作  者:   ZENG MQ, TAN LF, WANG J, CHEN LF, RUMMELI MH, FU L
  • 作者关键词:  
  • 出版物名称:   CHEMISTRY OF MATERIALS
  • ISSN:   0897-4756 EI 1520-5002
  • 通讯作者地址:   Wuhan Univ
  • 被引频次:   43
  • DOI:   10.1021/cm501571h
  • 出版年:   2014

▎ 摘  要

The self-limited chemical vapor deposition of uniform single-layer graphene on Cu foils generated significant interest when it was initially discovered. Soon after, the fabrication of real uniform graphene was found to need extremely precise control of the growth conditions. Slight deviations terminate the self-limiting homogeneous growth, inevitably leading to multilayer graphene formation. Here we propose an innovative way to utilize liquid metals to resolve this thorny problem. In stark contrast to the low carbon solubility found in solid metals (e.g., Cu), catalytically decomposed carbon atoms are embedded in liquid metals. During cooling, the homogeneous solidified surface forms from the quasi-atomic smooth liquid surface, and carbon precipitation is blocked by the frozen metal lattices, which are insoluble to carbon. The underlying liquid bulk acts as a container to buffer the excess carbon supply, which normally would lead to the formation of multilayer graphene in the conventional CVD process. As a result, the growth of graphene becomes governed by a self-limiting surface catalytic process and is robust to variations in growth conditions. With simplicity, scalability, and a large growth window, the use of liquid metals provides an attractive solution to obtain uniform graphene.