• 文献标题:   Poly(2,5-benzimidazole)-Grafted Graphene Oxide as an Effective Proton Conductor for Construction of Nanocomposite Proton Exchange Membrane
  • 文献类型:   Article
  • 作  者:   QIU X, UEDA M, HU HY, SUI YG, ZHANG X, WANG LJ
  • 作者关键词:   proton exchange membrane, sulfonated poly ether ether ketone speek nanocomposite membrane, poly 2 5benzimidazole grafted graphene oxide, phosphoric acid doping, h2/air fuel cell
  • 出版物名称:   ACS APPLIED MATERIALS INTERFACES
  • ISSN:   1944-8244
  • 通讯作者地址:   Nanjing Univ Sci Technol
  • 被引频次:   11
  • DOI:   10.1021/acsami.7b07777
  • 出版年:   2017

▎ 摘  要

To improve proton conduction properties of conventional sulfonated poly(ether ether ketone) (SPEEK), poly(2,5-benzimidazole)-grafted graphene oxide (ABPBI-GO) was prepared to fabricate nanocomposite membranes, which then were further doped with phosphoric acid (PA). The ABPBI-GO was synthesized through the reaction of 3,4-diaminobenzoic acid with the carboXyl acid groups present on the GO surface. The simultaneous incorporation of ABPBI-GO and PA into SPEEK did not only improve the physicochemical performance of the membranes in terms of thermal stability, water uptake, dimensional stability, proton conductivity, and methanol permeation resistance but also relieve PA leaching from the membranes though acid base interactions. The resulting composite membranes exhibited enhanced proton conductivities in extended humidity ranges thanks to the hygroscopic character of PA and the increased water uptake. Moreover, the unique self-ionization, self-dehydration, and nonvolatile properties of PA improved the high-temperature proton conductivities (sigma) of PA-doped membranes. The PA-doped SPEEK/ABPBI-GO-3.0 delivered a sigma of 7.5 mS cm(-1) at 140 degrees C/0% RH. This value was fourfold higher than that of pristine SPEEK membranes. The PA-doped SPEEK/ABPBI-GO-3.0 based fuel cell membranes delivered power densities of 831.06 and 72.25 mW cm(-2) at 80 degrees C/95% RH and 120 degrees C/0% RH, respectively. By contrast, the PA-doped SPEEK membrane generated only 655.63 and 44.58 MW cm(-2) under the same testing conditions.