▎ 摘 要
The sensitivity of graphene to the surrounding environment is given by its pi electrons, which are directly exposed to molecules in the ambient air. The high sensitivity of graphene to the local environment has shown to be both advantageous and problematic for graphene-based devices, such as transistors and sensors, where the graphene carrier concentration and mobility changes due to ambient humidity variations. In this review, recent progress is presented in understanding the effects of water on different types of graphene: epitaxially grown and quasi-free standing on SiC(0001), grown by chemical vapour deposition and transfered on SiO2, and exfoliated flakes. It is demonstrated that water withdraws electrons from graphene, but the graphene-water interaction highly depends on the thickness, layer stacking, underlying substrate and substrate-induced doping. Moreover, we highlight the importance of clear and unambiguous description of the environmental conditions (i.e. relative humidity) whenever a routine characterisation for carrier concentration and mobility is reported (often presented as a simple figure-of-merit), as these electrical characteristics are highly dependent on the adsorbed molecules and the surrounding environment.