▎ 摘 要
Nanocomposites of polyacrylonitrile (PAN) with reduced graphene oxide (rGO) were prepared using a solution mixing technique employing polyvinyl phenol (PVP) as a compatibilizer. The PVP can facilitate composite formation by interacting with both rGO and PAN via pi-pi and H-bonding respectively. Various amounts of rGO were used to prepare PAN nanocomposites. The cross-sectional morphology of the composite films shows a uniform dispersion of rGO sheets in the PAN matrix. The Fourier transform infrared (FT-IR) studies revealed that good interaction of the rGO/PVP hybrid with PAN. The wide angle x-ray diffraction (WAXS) study confirms that the rGO sheets were uniformely dispersed as individual sheets in the PAN matrix. Thermogravimetric analysis shows enhanced thermal stability of the composite compared to pure PAN. The tensile strength and elastic modulus of the nanocomposites increased with increasing rGO content. A 102% enhancement in tensile strength and a 62.9% enhancement in elastic modulus were observed in the nanocomposite with 5% rGO. (C) 2015 Elsevier Ltd. All rights reserved.