▎ 摘 要
The transport properties of a twisted bilayer graphene barrier are investigated for various twist angles. Remarkably, for small twist angles around the magic angle theta(m)similar to 1.05 degrees, the local currents around the AA-stacked regions are strongly enhanced compared to the injected electron rate. Furthermore, the total and counterflow (magnetic) current patterns show high correlations in these regions, giving rise to well-defined magnetic moments that form a magnetic Moire superlattice. The orientation and magnitude of these magnetic moments change as a function of the gate voltage and possible implications for emergent spin-liquid behaviour are discussed.