▎ 摘 要
Novel carbon nanostructures, carbon nanobuds and nanoballs in situ grown on graphene, have been synthesized by the electrochemical method in this study. Pristine graphene (GR) sheets were potentiostatic treated with sulfuric acid and were oxidized at 1.4-2.0 V constant potentials to obtain numerous nanobuds and peeled nanoballs. Scanning electron microscopy was used to determine the morphology of electrochemically treated GR nanosheets. Fourier transform infrared, X-ray diffraction analysis, and Raman spectroscopy were used to characterize the structure of samples. The above results indicate that amounts of nanobuds were in situ grown on the surface of GR sheets at a constant potential of 1.4 V was added to the GR electrode. With the constant potential increasing, the nanobuds grew into the nanoballs, exfoliating from the surface of graphene sheets, whereas the peroxidation of graphene sheets occurred at a higher potential of 2.0 V, leading to the formation of a large amount of graphene oxide fragments. Therefore, the optimal processing parameter of the formation of carbon nanoballs was under the constant potential of 1.8 V for 500 s.