▎ 摘 要
Graphene displays various properties like optical, electrical, mechanical, etc. resulting in a large range of applications in biosensing, bio-imaging, medical and electronic devices. The graphene-based nanomaterials show disadvantages like hydrophobic surface, degradation of biomolecules (proteins and amino acids) and toxicity to the human and microbes by permeating into the cells and thus, limiting the use in the biomedical field. Conjugation of carbohydrates like chitin, cyclodextrins and cellulose with graphene results in thermal stability, oxygen repulsive ability, fire-retardant and gelling properties with better biodegradability, biocompatibility and safety leading to the formation of environment-friendly biopolymers. This article delivers an overview of the molecular interaction of different carbohydrates-derived from natural sources like marine, plants and microbes with graphene nanosheets to extend the applications in tissue engineering, surgical materials, biosensing and novel drug delivery for prolonged action in the treatment of breast and hepatic cancers.