▎ 摘 要
The ability to print high conductivity, conformal, and flexible electrodes is an important technological challenge in printed electronics, especially for large-area formats with low cost considerations. In this Letter, we demonstrate inkjet-printed, high conductivity graphene patterns that are suitable for flexible electronics. The ink is prepared by solution-phase exfoliation of graphene using an environmentally benign solvent, ethanol, and a stabilizing polymer, ethyl cellulose. The inkjet-printed graphene features attain low resistivity of 4 m Omega.cm after a thermal anneal at 250 degrees C for 30 mm while showing uniform morphology, compatibility with flexible substrates, and excellent tolerance to bending stresses.