• 文献标题:   Enhanced Bonding between Noble Metal Adatoms and Graphene with Point Defects
  • 文献类型:   Article
  • 作  者:   XIE PY, ZHUANG GL, LU YA, WANG JG, LI XN
  • 作者关键词:   density functional theory, graphene, au, pt, ag
  • 出版物名称:   ACTA PHYSICOCHIMICA SINICA
  • ISSN:   1000-6818
  • 通讯作者地址:   Zhejiang Univ Technol
  • 被引频次:   8
  • DOI:   10.3866/PKU.WHXB201111021
  • 出版年:   2012

▎ 摘  要

The adhesion of Ag, Au, and Pt adatoms on pristine graphene and that containing point defects including N-substitution, B-substitution, and a single vacancy, as well as the interfacial properties of these systems, were investigated using density functional theory. The calculations show that Ag and Au cannot bind to pristine graphene. In contrast, B and N-doping increase the interaction between Ag, Au, or Pt metal adatoms and graphene, while a vacancy defect leads to the strong chemisorption of metal adatoms on graphene. Based on electronic structural analysis, N-doping strengthens the covalent bond between Au or Pt and carbon atoms, while B-doping leads to the formation of a chemical bond between Au or Ag and B. The vacancy defect acts as an anchoring site for metal adatoms and increases the bonding between metal adatoms and carbon atoms. Therefore, three types of point defect can effectively enhance the interaction between noble metal adatoms and graphene in the sequence: vacancy defect >> B-doping>N-doping.