▎ 摘 要
We present the mechanism and performance of optical limiting (OL) in hydrogen exfoliated graphene (HEG), functionalized HEG (f-HEG) and its metal hybrids. At the wavelengths used, the mechanism of nonlinear absorption (NLA) involves two-photon absorption and excited state absorption in the nanosecond excitation regime, and saturable absorption in combination with two-photon absorption in the femtosecond (ultrafast) excitation regime. The role of defects in the OL performance of HEG and f-HEG is investigated with the help of their Raman spectra. OL efficiency of f-HEG is found to improve with Pt and Pd nanoparticle decoration due to an enhanced NLA, which arises mainly from interband transitions between the d band and the s-p conduction band in the metal NPs, and charge transfer between f-HEG and metal NPs. Thermally induced light scattering is negligible in these water dispersed systems.