• 文献标题:   Role of interlayer spacing on electronic, thermal and optical properties of BN-codoped bilayer graphene: Influence of the interlayer and the induced dipole-dipole interactions
  • 文献类型:   Article
  • 作  者:   ABDULLAH NR, RASHID HO, TANG CS, MANOLESCU A, GUDMUNDSSON V
  • 作者关键词:   thermoelectric, bilayer graphene, dft, electronic structure optical propertie
  • 出版物名称:   JOURNAL OF PHYSICS CHEMISTRY OF SOLIDS
  • ISSN:   0022-3697 EI 1879-2553
  • 通讯作者地址:  
  • 被引频次:   12
  • DOI:   10.1016/j.jpcs.2021.110095 EA APR 2021
  • 出版年:   2021

▎ 摘  要

We demonstrate that the electronic, thermal, and optical properties of a graphene bilayer with boron and nitrogen ldopant atoms can be controlled by the interlayer distance between the layers in which the interaction energy and the van der Waals interaction between the dopant atoms play an essential role. We find a conversion of an AA-to an AB-stacked bilayer graphene caused by the repulsive interaction between dopant atoms. At a short interlayer distance, a strong repulsive interaction inducing a strong electric dipole moment of the dopant atoms is found. This gives rise to a breaking of the high symmetry, opening up a bandgap. Consequently, a considerable change in thermoelectric properties such as the Seebeck coefficient and the figure of merit are seen. The repulsive interaction is reduced by increasing the interlayer distance, and at a large interlayer distance the conversion process of the stacking order vanishes. A small bandgap is found leading to a low Seebeck coefficient and a figure of merit. For both short and large interlayer distances, a prominent peak in the optical response is found in the visible range and the peak position is inversely proportional to the interlayer distance.