• 文献标题:   Theoretical analysis of a graphene quantum well hybrid plasmonic waveguide to design an inter/intra-chip nano-antenna
  • 文献类型:   Article
  • 作  者:   KHODADADI M, NOZHAT N, MOSHIRI SMM
  • 作者关键词:   graphene quantum well, chemical potential, hybrid plasmonic waveguide, multiaccess user, wireless optical network onchip wionoc
  • 出版物名称:   CARBON
  • ISSN:   0008-6223 EI 1873-3891
  • 通讯作者地址:  
  • 被引频次:   3
  • DOI:   10.1016/j.carbon.2021.12.085 EA JAN 2022
  • 出版年:   2022

▎ 摘  要

In this paper, a smart multi-user wireless link based on a graphene quantum well vertical hybrid plasmonic waveguide-fed nano-antenna is proposed. The theoretical method and finite element method (FEM) are used to verify that the vertical hybrid plasmonic waveguide (VHPW) supports both even and odd fundamental modes. Utilizing multi-mode graphene quantum well VHPW leads to the design of a selective mode nano-antenna with intermediate broadside and end -fire radiation patterns with high directivities of 9.38 dBi and 11.8 dBi at 193.5 THz, respectively, obtained by the finite-difference time domain method. Also, to verify the accuracy of nano-antenna results, the FEM approach is used. The nano-antenna performance as a wireless inter/intra-chip link is investigated, which confirms the even mode plays a key role to create a multiple-access wireless system. Based on the amazing features of graphene as an epsilon-near-zero and absorptive/transparent material, the accessibility of receivers is easily controlled. The effect of a single row array structure and its application as beam steering is studied. Finally, to estimate the performance of quantum well nano-antenna as a real device, which is compatible with electron-beam lithography and lift-off fabrication techniques, the effect of metal layer roughness and 5% tolerance for geometrical parameters are investigated. (c) 2021 Elsevier Ltd. All rights reserved.