• 文献标题:   Multifunctional elastomer nanocomposites with functionalized graphene single sheets
  • 文献类型:   Article
  • 作  者:   OZBAS B, O NEILL CD, REGISTER RA, AKSAY IA, PRUD HOMME RK, ADAMSON DH
  • 作者关键词:   elastomer, filler, graphene, multifunctional, nanocomposite
  • 出版物名称:   JOURNAL OF POLYMER SCIENCE PART BPOLYMER PHYSICS
  • ISSN:   0887-6266
  • 通讯作者地址:   Princeton Univ
  • 被引频次:   66
  • DOI:   10.1002/polb.23080
  • 出版年:   2012

▎ 摘  要

We demonstrate the use of functionalized graphene sheets (FGSs) as multifunctional nanofillers to improve mechanical properties, lower gas permeability, and impart electrical conductivity for several distinct elastomers. FGS consists mainly of single sheets of crumbled graphene containing oxygen functional groups and is produced by the thermal exfoliation of oxidized graphite (GO). The present investigation includes composites of FGS and three elastomers: natural rubber (NR), styrenebutadiene rubber, and polydimethylsiloxane (PDMS). All of these elastomers show similar and significant improvements in mechanical properties with FGS, indicating that the mechanism of property improvement is inherent to the FGS and not simply a function of chemical crosslinking. The decrease in gas permeability is attributed to the high aspect ratio of the FGS sheets. This creates a tortuous path mechanism of gas diffusion; fitting the permeability data to the Nielsen model yields an aspect ratio of similar to 1000 for the FGS. Electrical conductivity is demonstrated at FGS loadings as low as 0.08% in PDMS and reaches 0.3 S/m at 4 wt % loading in NR. This combination of functionalities imparted by FGS is shown to result from its high aspect ratio and carbon-based structure. (C) 2012 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys, 2012