▎ 摘 要
We experimentally demonstrate actively tunable infrared absorption based on graphene-covered SiC metasurfaces. A dry transfer method is employed to coat monolayer graphene on the metasurface characterized by scanning electron microscope, atomic force microscopy, and Raman spectroscopy. A solid polymer electrolyte is introduced to tune the graphene chemical potential upon electrical gating. In situ optical measurement shows a shift in the absorption peak upon a change in gate voltage. Numerical simulations unveil that the tuning effect is attributed to the excitation of a magnetic polariton, whose resonance frequency changes with graphene chemical potential upon electrical gating. The reported results realize the possibility of tuning thermal radiative property of a graphene-covered metasurface through a solid polymer electrolyte, providing a new approach to fabricating graphene-based tunable infrared devices for dynamic radiative thermal management and sensing applications.