• 文献标题:   Shrinkage induced stretchable micro-wrinkled reduced graphene oxide composite with recoverable conductivity
  • 文献类型:   Article
  • 作  者:   FENG CF, YI ZF, DUMEE LF, GARVEY CJ, SHE FH, LIN B, LUCAS S, SCHUTZ J, GAO WM, PENG Z, KONG LX
  • 作者关键词:  
  • 出版物名称:   CARBON
  • ISSN:   0008-6223 EI 1873-3891
  • 通讯作者地址:   Deakin Univ
  • 被引频次:   25
  • DOI:   10.1016/j.carbon.2015.06.011
  • 出版年:   2015

▎ 摘  要

A novel thermo-mechanical shrinking method is reported to fabricate a three dimensional (3D) stretchable and highly conductive micro-wrinkled reduced graphene oxide (MWrGO) supported on an elastic polydimethylsiloxane (PDMS) substrates. This 3D rGO architecture not only increases the specific area for more electrons to pass through but also bestows stretchability to the conductive pathway. The structural change of micro-wrinkles has been monitored by an in situ straining microscopy. The electrical conductivity of the samples remained fairly constant and stayed above 25 S/m under low deformation (no more than 30% strain) for up to 500 mechanical stretching-release cycles. Additionally, the MWrGO/PDMS composite can be stretched bi-axially because the shrinking process itself is isotropic. This MWrGO based stretchable composite with stable electrical properties and long life span could form a new platform of stretchable electronics. (C) 2015 Elsevier Ltd. All rights reserved.