▎ 摘 要
In this work, graphene (G) and graphene oxide (GO) were utilized to enrich and ionize long-chain fatty acids. All together five long-chain fatty acids were selected as models here, n-dodecanoic acid (C12), n-tetradecanoic acid (C14), n-hexadecanoic acid (C16), n-octadecanoic acid (C18), and n-eicosanoic acid (C20). Due to the large surface area and strong interaction force of G or GO, all the five long-chain fatty models were effectively enriched by G or GO. On the other hand, the excellent electronic, thermal, and mechanical properties enable G and GO to be prefect energy receptacles for laser radiation, which make the ionization steps more effective. Eventually, the promoted G and GO methodology can sensitively detect the five long-chain fatty acid models from real biological samples even at low concentrations. Meanwhile, by adopting our promoted methodology, the detection of long-chain fatty acids by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF-MS) was demonstrated to be simple, sensitive, fast, cost effective and high throughput, which is meaningful as to practical usage. Copyright (C) 2011 John Wiley & Sons, Ltd.