• 文献标题:   Graphene oxide bulk material reinforced by heterophase platelets with multiscale interface crosslinking
  • 文献类型:   Article
  • 作  者:   CHEN K, TANG XK, JIA BB, CHAO CZ, YAN W, HOU JY, DONG LT, DENG XL, XIAO TH, GODA KSK, GUO L
  • 作者关键词:  
  • 出版物名称:   NATURE MATERIALS
  • ISSN:   1476-1122 EI 1476-4660
  • 通讯作者地址:  
  • 被引频次:   27
  • DOI:   10.1038/s41563-022-01292-4 EA JUL 2022
  • 出版年:   2022

▎ 摘  要

A nacre-inspired, centimetre-sized bulk material is prepared by assembling graphene oxide and microscale amorphous/crystalline heterophase reinforcing platelets adhered together with polymer-based crosslinkers, which shows high flexural strength and fracture toughness. Graphene oxide (GO) and reduced GO possess robust mechanical, electrical and chemical properties. Their nanocomposites have been extensively explored for applications in diverse fields. However, due to the high flexibility and weak interlayer interactions of GO nanosheets, the flexural mechanical properties of GO-based composites, especially in bulk materials, are largely constrained, which hinders their performance in practical applications. Here, inspired by the amorphous/crystalline feature of the heterophase within nacreous platelets, we present a centimetre-sized, GO-based bulk material consisting of building blocks of GO and amorphous/crystalline leaf-like MnO2 hexagon nanosheets adhered together with polymer-based crosslinkers. These building blocks are stacked and hot-pressed with further crosslinking between the layers to form a GO/MnO2-based layered (GML) bulk material. The resultant GML bulk material exhibits a flexural strength of 231.2 MPa. Moreover, the material exhibits sufficient fracture toughness and strong impact resistance while being light in weight. Experimental and numerical analyses indicate that the ordered heterophase structure and synergetic crosslinking interactions across multiscale interfaces lead to the superior mechanical properties of the material. These results are expected to provide insights into the design of structural materials and potential applications of high-performance GO-based bulk materials in aerospace, biomedicine and electronics.