• 文献标题:   Carrier-carrier scattering and negative dynamic conductivity in pumped graphene
  • 文献类型:   Article
  • 作  者:   SVINTSOV D, RYZHII V, SATOU A, OTSUJI T, VYURKOV V
  • 作者关键词:  
  • 出版物名称:   OPTICS EXPRESS
  • ISSN:   1094-4087
  • 通讯作者地址:   Tohoku Univ
  • 被引频次:   17
  • DOI:   10.1364/OE.22.019873
  • 出版年:   2014

▎ 摘  要

We theoretically examine the effect of carrier-carrier scattering processes on the intraband radiation absorption and their contribution to the net dynamic conductivity in optically or electrically pumped graphene. We demonstrate that the radiation absorption assisted by the carrier-carrier scattering is comparable with Drude absorption due to impurity scattering and is even stronger in sufficiently clean samples. Since the intraband absorption of radiation effectively competes with its interband amplification, this can substantially affect the conditions of the negative dynamic conductivity in the pumped graphene and, hence, the interband terahertz and infrared lasing. We find the threshold values of the frequency and quasi-Fermi energy of nonequilibrium carriers corresponding to the onset of negative dynamic conductivity. The obtained results show that the effect of carrier-carrier scattering shifts the threshold frequency of the radiation amplification in pumped graphene to higher values. In particular, the negative dynamic conductivity is attainable at the frequencies above 6 THz in graphene on SiO2 substrates at room temperature. The threshold frequency can be decreased to markedly lower values in graphene structures with high-kappa substrates due to screening of the carrier-carrier scattering, particularly at lower temperatures. (C) 2014 Optical Society of America