▎ 摘 要
Two-dimensional (2D) material-based membranes hold great promise in wastewater treatment. However, it remains challenging to achieve highly efficient and precise small molecule/ion separation with pure 2D material-fabricated lamellar membranes. In this work, laminated graphene oxide (GO)-cellulose nanocrystal (CNC) hybrid membranes (GO/CNC) were fabricated by taking advantages of the unique structures and synergistic effects generated from these two materials. The characterization results in physiochemical properties, and the structure of the as-synthesized hybrid membranes displayed enhanced membrane surface hydrophilicity, enhanced crumpling surface structure, and slightly enlarged interlayer-spacing with the incorporation of CNCs. Water permeability increases by two to four times with the addition of different CNC weight ratios in comparison to a pristine GO membrane. The optimal GO/CNC membrane achieved efficient rejection toward three typical antibiotics at 74.8, 90.9, and 97.2% for sulfamethoxazole (SMX), levofloxacin (Levo), and norfloxacin (Nor), respectively, while allowing a high passage of desirable nutrients such as NO3- and H2PO4-. It was found that SMX removal is primarily governed by electrostatic repulsion, while adsorption plays a crucial role in removing Levo and Nor. Moreover, the density functional theory calculations confirmed the increased antibiotic removal in the presence of an organic foulant, humic acid. Such a 2D material-based hybrid membrane offers a new strategy to develop fit-for purpose membranes for resource recovery and water separation.